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Abstract

Ventricular volume (VV) is a powerful global indicator of brain tissue loss on MRI in normal 

aging and dementia. VV is used by radiologists in clinical practice and has one of the highest 

obtainable effect sizes for tracking brain change in clinical trials, but it is crucial to relate VV to 

structural alterations underlying clinical symptoms. Here we identify patterns of thinner cortical 

gray matter (GM) associated with dynamic changes in lateral VV at 1-year (N=677) and 2-year 

(N=536) intervals, in the ADNI cohort. People with faster VV loss had thinner baseline cortical 

GM in temporal, inferior frontal, inferior parietal, and occipital regions (controlling for age, sex, 

diagnosis). These findings show the patterns of relative cortical atrophy that predict later 

ventricular enlargement, further validating the use of ventricular segmentations as biomarkers. We 

may also infer specific patterns of regional cortical degeneration (and perhaps functional changes) 

that relate to VV expansion.
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1 Introduction

The lateral ventricles are a fluid-filled region within the brain that expands to fill space 

formerly occupied by degenerating brain tissue inside the fixed volume of the skull. 

Ventricular volume (VV) is a widely-used biomarker of Alzheimer’s disease (AD) 

*For the Alzheimer’s Disease Neuroimaging Initiative (ADNI).
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progression; it offers one of the highest effect sizes for tracking brain change over time, and 

for detecting disease effects, making it highly advantageous in clinical trials.

Clinically, VV is commonly used by radiologists to help diagnose neurodegeneration, more 

so than many of the more complex brain MRI measures analyzed in research. Even so, 

information is sorely needed on what VV changes imply in terms of alterations in regions 

underlying cognitive functions, such as the cortex. Cross-structure correlations linking 

changes in VV to differences in other brain tissues have been largely ignored in univariate 

analyses of single structures or maps.

Reductions in gray/white matter contrast with age make it challenging to detect longitudinal 

change in many brain structures - such as the hippocampus and cortex - usually requiring 

time-consuming manual edits even with the most widely-used segmentation packages. In 

contrast, the boundary demarcating the lateral ventricles (cerebrospinal fluid (CSF)/brain 

tissue) is easier to detect, making ventricular segmentation reliable and robust [1]. As brain 

atrophy progresses, changes in cortical structure become even more extreme, along with 

further reductions in contrast at the gray/white interface. Segmentation of cortical structures, 

which tend to have greater functional significance, becomes even more difficult in the aging 

population.

The lateral ventricles can be measured in brain MRI scans using several different 

techniques. VV [7], shape [2], and boundary shift integral [8] have been validated as highly 

sensitive biomarkers of AD and mild cognitive impairment (MCI), offering high 

classification accuracy and greater consistency than some cognitive tests [9], [10]. 

Longitudinal studies show that VV is a very sensitive biomarker of ongoing atrophy in 

elderly populations. In elderly non-demented adults, VV changes at a markedly faster rate 

(2.80–4.4% per year) than hippocampal volumes (0.68–0.84% per year) [3]. Changes in VV 

may be faster in MCI and earlier AD than in later AD or normal aging [7], [11], but 

accumulated VV differences are most extreme in later stages of AD [12].

Prior methods for VV segmentation have used semi-automated, automated [4], and single-

atlas or multi-atlas methods [5]. In this analysis, we segmented the ventricles with a 

modified multi-atlas approach. Our segmentation method makes use of group-wise surface 

registration of existing templates, and applies surface-based template blending for more 

accurate results [5]. For cortical segmentation, we use the standard FreeSurfer tools (v5.0.0) 

[6].

Most studies of VV have been univariate, looking at the ventricles alone as a single 

structure, which does not allow more detailed interpretations of how changes in VV relate to 

other brain regions. Two groups have related VV to shape and volume differences in 

periventricular brain structures (including the hippocampus) [1], [2]; however, as far as we 

know, ours is the first study to use VV to infer cortical brain structure differences. By 

inferring cortical alterations from ventricular changes, we can better interpret results of 

clinical trials that show a deceleration in the rate of VV loss.
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2 Methods

2.1 Cohort Studied

We analyzed 677 individuals who had received a high-resolution, T1-weighted structural 

MRI brain scan as part of phase 1 of the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI1) and whose scans passed quality control for both ventricular and cortical 

segmentations. Segmentations were assessed visually from multiple views for defects. All 

subjects passed quality control (QC) for ventricle segmentations and six subjects were 

excluded during QC of cortical GM surfaces.

ADNI is a multi-site, longitudinal study of patients with Alzheimer’s disease (AD), 

individuals with mild cognitive impairment (MCI) and healthy elderly controls (HC). 

Standardized protocols maximize consistency across sites.

2.2 Scan Acquisition and Processing

For VV segmentation, we analyzed baseline, 1-year (N=677), and 2-year (N=536) follow-up 

brain MRI scans (1.5-Tesla, T1-weighted 3D MP-RAGE, TR/TE = 2400/1000 ms, flip angle 

= 8°, slice thickness = 1.2 mm, final voxel resolution = 0.9375 × 0.9375 × 1.2 mm3). Raw 

MRI scans were pre-processed to reduce signal inhomogeneity and were linearly registered 

to a template (using 9 parameters).

For cortical GM segmentation, we analyzed 677 baseline brain MRI scans (1.5-Tesla, T1-

weighted 3D MP-RAGE, TR/TE = 2400/1000 ms, flip angle = 8°, slice thickness = 1.2 mm, 

24-cm field of view, a 192×192×166 acquisition matrix, final voxel resolution = 

1.25×1.25×1.2 mm3, later reconstructed to 1 mm isotropic voxels). To simplify the 

presentation, we did not perform cortical segmentation at later time points, as the baseline 

differences tend to reflect the overall level of atrophy, and to some extent they also reflect 

the rate of atrophy.

Bias field correction (N3) was applied as part of the standard ADNI dataset preprocessing 

before scans were downloaded. We used a registration with 9 parameters as it corrects for 

scanner voxel size variation and arguably outperforms 6 parameter registration in multi-site 

studies such as ADNI [13], [14]. Independent alignment procedures were used for the 

ventricles and for the cortex, as described below (Sections 2.3 and 2.4), using methods 

optimized for each structure.

2.3 Ventricular Segmentation

Ventricular segmentation was performed using a validated method [15]. Ventricular surfaces 

were extracted using an inverse-consistent fluid registration with a mutual information 

fidelity term to align a set of hand-labeled ventricular templates to each scan. The template 

surfaces were registered as a group following a medial-spherical registration method [15]. 

To improve upon the standard multi-atlas segmentation, which generally involves a direct, 

or a weighted average of the warped binary masks, we selected an individual template that 

best fits the new boundary at each boundary point. A naïve formulation of this synthesis can 

be written as below:
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(1)

Here, I, S are the new image and boundary surface, {Ii, Ti}i are template surfaces and 

images warped to the new image, and s(I, Ii)[p] is some local normalized similarity measure 

at point p. Normalized mutual information around a neighborhood of each point was used as 

similarity. This approach allows for more flexible segmentation, in particular for outlier 

cases. Even a weighted average, with a single weight applied to each individual template, 

often distorts geometric aspects of the boundary that are captured in only a few templates, 

perhaps only in one. However, to enforce smoothness of the resulting surface, care must be 

taken around the boundaries of the surface masks Wi. An effective approach is to smooth the 

masks with a spherical heat kernel, so that our final weights are 

.

2.4 Cortical Segmentation

Cortical reconstruction and volumetric segmentation were performed with the FreeSurfer 

(v5.0.0) image analysis suite, which is freely available online (http://

surfer.nmr.mgh.harvard.edu/). Details of these procedures have been described previously 

[6]. Briefly, the processing includes removal of non-brain tissue, intensity normalization, 

tessellation of the cortical gray/white matter boundary, automated topology correction and 

surface deformation along intensity gradients to optimally define cortical surface borders, 

registration to a spherical atlas using individual cortical folding patterns to align cortical 

anatomy across individuals, and creation of 3D maps of GM (as measured with thickness, 

volume, and surface area) at each cortical surface point. After processing, images are in an 

isotropic space of 256 voxels along each axis (x, y, and z) with a final voxel size of 1 mm3.

2.5 Statistical Analysis: Mapping Ventricular Change onto the Cortical Surface

Statistical tests were conducted at each point on the cortical surface separately for 1-year 

and 2-year change in VV after applying cortical smoothing (kernel radius=25 mm, full width 

at half maximum). We tested a series of general linear models (GLM) of change in VV on 

cortical GM thickness after: (1) controlling for effects of sex, age, and diagnosis (AD, MCI, 

or healthy elderly controls) in all individuals (1-year change: N=677; 2-year change: 

N=536), (2) controlling for sex and age in AD, MCI and control groups, separately (1-year: 

AD N=142, MCI N=335, Control N=200; 2-year: AD N=109, MCI N=251, Control N=176), 

and (3) controlling for sex and age in matched groups of N=100 AD, MCI and controls. 

Analyses were run separately for associations within each hemisphere (i.e., for change in left 

VV with left cortical GM thickness and for right VV change with right cortical GM 

thickness). To control the rate of false positives, we enforced a standard false discovery rate 

(FDR) correction for multiple statistical comparisons across voxels in the entire left and 

right brain surfaces, using the conventionally accepted false positive rate of 5% (q=0.05) 

[16].
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2.6 Post Hoc Statistical Analysis: Linear Relationships between Regional Cortical 
Thickness and Ventricular Change

We identified clusters that passed FDR in the 3D cortical surface maps for the matched 

groups of N=100 AD, MCI, and controls for the GLM of 2-year change in VV on cortical 

GM thickness after controlling for sex and age. Within each statistically significant cluster 

on the cortical surface, we calculated mean cortical GM thickness for each subject. We then 

plotted each subject’s mean cortical GM thickness and raw 2-year change in VV for each 

group (AD, MCI, and controls for N=100), to understand the characteristics (i.e., magnitude 

and shape) of the significant associations we found in our surface GLM between the two 

measures.

3 Results

In the full sample, we found that (Figure 1) 1-year (N=677) and 2-year (N=536) changes in 

VV were significantly associated with baseline cortical GM thickness in temporal, inferior 

and anterior frontal, inferior parietal, and some occipital regions, after controlling for age, 

sex, and diagnosis. The significant regions were somewhat more expansive, in the same 

areas, for the 2-year change compared to the 1-year change in VV. If ventricular change is 

linear, these two maps should be the same, but the 2-year map may show more extensive or 

stronger associations because the 2-year measures have greater SNR. All results presented 

pass a hemispheric FDR correction at q=0.05.

Looking separately at diagnosis (Figure 2), 1-year and 2-year changes in VV were most 

strongly associated with baseline cortical GM thickness in MCI, with maps similar to those 

for the full cohort. In MCI, left inferior and anterior frontal, temporal, inferior parietal, and 

inferior occipital regions were significantly negatively associated with 1-year change in VV 

(left: −log10(p-values)=1.58–3.84, right: −log10(p-values)=3.28–5.54, corrected). Somewhat 

larger regions, bilaterally, were significantly negatively associated with 2-year change in 

ventricular volume in MCI (left: −log10(p-values)=1.55–3.81, right −log10(p-values)=1.55–

3.80, corrected). In AD, significant negative associations were found in the bilateral superior 

frontal, left middle frontal, and left anterior and posterior cingulate cortex for 1-year change 

in VV (left: −log10(p-values)=2.39–4.64, right: −log10(p-values)=3.04–5.30, corrected). 

Significant negative associations for 2-year change in VV were found in left anterior and 

posterior cingulate cortex and small clusters in the left superior and middle frontal cortex for 

AD (left: −log10(p-values)=2.95–5.20, right: −log10(p-values)=3.64–5.90, corrected). In 

elderly controls, right superior frontal GM thickness at baseline was significantly negatively 

associated with 2-year change in VV (right: −log10(p-values)=3.32–5.582, corrected); no 

significant associations were detected for 1-year change, perhaps because SNR for tracking 

change is poorer when the interval is shorter, especially in this group which is expected to 

have slower rates of VV expansion.

In MCI, longitudinal changes in VV are associated with cortical GM thickness in a well-

known pattern of areas vulnerable to AD pathology [17], [18], such as progressive 

accumulation of beta-amyloid that precedes cognitive decline and tau that parallels cognitive 

decline, as measured by F18-FDDNP PET brain scans (Figure 3). Primary sensorimotor 

areas that are spared in AD, which are also difficult to segment due to very thin GM and 
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overabundance of myelin creating poor tissue contrast in MRI, were not significant in our 

maps.

To examine if insufficient power contributed to differences in results for groups with smaller 

sample size, we re-analyzed subsets of N=100 matched by age and sex in the AD, MCI, and 

control groups at 1-year and 2-years. In the equally-sized subsets, 1-year change in VV was 

negatively associated with right superior frontal cortex thickness in AD (left: not significant, 

right: −log10(p-values)=3.66–5.92). No other significant results were found for 1-year 

change in VV for MCI or elderly controls with N=100. Two-year change in VV (Figure 4, 
top panel) was negatively associated with GM thickness in left posterior and rostral anterior 

cingulate, lateral orbitofrontal, and rostral middle frontal cortex in AD (left: −log10(p-

values)=2.15–4.41, right: not significant) and left pars orbitalis, fusiform, the isthmus and 

posterior cingulate, and superior frontal cortex in MCI (left: −log10(p-values)=2.15–4.41, 

right: not significant). In elderly controls, 1-year change in VV was negatively associated 

with GM thickness in the right insula, superior frontal, precuneus, supramarginal, transverse 

temporal, inferior parietal, and isthmus of the cingulate cortex (left: not significant, right: 

−log10(p-values)=2.28–4.54).

After limiting the sample size of all groups to N=100 (the approximate size of the smallest 

group), the extent of significant regions appears roughly similar across groups, supporting 

the interpretation that the more prominent effects seen in the full-sized MCI sample (twice 

as large as the other groups) may be attributed to increased power rather than specific to this 

diagnostic category.

To better understand the characteristics of the relationship we found between VV and GM 

thickness in the surface GLMs (Figure 4, top panel), we plotted raw 2-year change in VV 

against mean GM thickness at baseline (averaged across all surface points within distinct 

statistically significant regions from the surface GLMs) in each subject from the N=100 

subsets for AD, MCI, and CON (Figure 4, bottom panel). As expected, all plots show 

negative relationships (greater VV expansion over time is associated with thinner baseline 

GM). Plots for AD (top row of plots) and MCI (second and third rows of plots) show greater 

variance and higher rates of expansion in 2-year VV compared to healthy elderly controls 

(bottom two rows of plots) for all statistical regions of interest. The plots also show that 

elderly controls have higher baseline GM thickness in several regions compared to AD and 

MCI groups. Steeper slopes for the healthy elderly control group may be explained by 

greater variance in baseline GM thickness compared to AD and MCI groups.

4 Discussion

Our results complement the current literature on change in ventricular enlargement as a 

robust clinical biomarker of disease progression in the early stages of AD. We also make a 

novel contribution to the field, which has largely ignored cross-structural correlations with 

VV, by showing how changes in VV relate to cortical GM thickness in normal aging and in 

varying stages of Alzheimer’s dementia. These results allow us to make stronger inferences 

about functionally important areas of the cortex, based on ventricular segmentations.
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The cortical regions significantly associated with dynamic changes in VV are among those 

that are regarded as most susceptible to AD-related pathologies in multiple domains, 

including accumulation of amyloid plaques and tau neurofibrillary tangles, metabolic 

disruption, functional and connectivity alterations, and structural GM loss. Interestingly, the 

lateralization of our findings (left in AD and MCI, right in controls) may not hold up in 

larger samples with higher statistical power. In equally-sized samples the extent of 

significant associations was similar across groups.

Ventricular measures on MRI are among the most reliable and robust, but have been 

previously limited as it has been hard to make inferences about specific alterations in 

cortical structure and their clinical or functional consequences. Cortical regions can be 

difficult to segment in elderly brains, so relating cortical changes to a highly reliable 

measure such as VV has great clinical advantages. Combining information from cortical 

architecture and ventricular enlargement may allow us to better understand factors affecting 

normal aging and different stages of neurodegeneration in disease. Future work will also 

apply the reverse approach, to map summary measures from the cortex (average and change 

in GM thickness in regions of interest) onto 3D ventricular shapes, to see which ventricular 

changes are most strongly associated with longitudinal changes in cortical thickness.
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Fig. 1. 
Hemispheric 3D maps show significant negative associations in the entire sample between 

1-year (N=677) and 2-year (N=536) change in VV and baseline cortical GM thickness in all 

individuals, after controlling for age, sex, and diagnosis (AD, MCI, or healthy elderly) (1-

year change, left: −log10(p-values)=1.53–3.76, right: −log10(p-values)=1.70–3.96; 2-year 

change, left: −log10(p-values)=1.51–3.77, right: −log10(p-values)=1.55–3.80, corrected). 

Results are corrected for multiple comparisons by thresholding at a q=0.05 false discovery 

rate (FDR) threshold across the entire brain surface. Blue represents areas where p-values 

passed the corrected significance threshold for a negative relationship between progressive 

ventricular enlargement and baseline cortical thickness values (greater VV enlargement 

associated with lower cortical GM thickness at baseline).
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Fig. 2. 
Hemispheric 3D maps of significant negative associations between 1-year and 2-year change 

in VV and baseline cortical gray matter thickness in AD (1-year: N=142; 2-year N: 109), 

MCI (1-year: N=335; 2-year N: 251), and healthy elderly individuals (1-year: N=200; 2-year 

N: 176), after controlling for age and sex (AD: 1-year change, left: −log10(p-values)=2.39–

4.64, right: −log10(p-values)=3.04–5.03, 2-year change, left: −log10(p-values)=2.95–5.20, 

right: −log10(p-values)=3.64–5.90; MCI: 1-year change, left: −log10(p-values)=1.58–3.84, 

right: −log10(p-values)=3.28–5.54, 2-year change, left: −log10(p-values)=1.55–3.81, right: 

−log10(p-values)= 1.55–3.80; Controls: 1-year change, left: −log10(p-values)=1.98–4.24, 

right: −log10(p-values)=2.36–4.62, 2-year change, left: −log10(p-values)=3.42–5.68, right: 

−log10(p-values)=3.32–5.58, corrected). Results were corrected for multiple comparisons by 

thresholding at a q=0.05 false discovery rate (FDR) threshold across the entire brain surface. 

Blue represents areas where p-values passed the corrected significance threshold for a 

negative relationship between ventricular enlargement and cortical thickness values (greater 

VV enlargement associated with lower cortical GM thickness at baseline).
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Fig. 3. 
Canonical progression of AD pathology (adapted from [17], [18]) as has been mapped 

previously in non-overlapping elderly samples. These patterns agree well with those seen in 

our cortical mapping of changes in VV, with significant associations in areas known to be 

susceptible to AD pathology and no detected relationship in areas that do not have a 

significant disease burden (primary sensorimotor cortex).
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Fig. 4. 
Top Panel: Hemispheric 3D maps of significant negative associations between 2-year 

change in VV and cortical GM thickness in matched N=100 sub-samples for AD, MCI, and 

healthy elderly individuals, after controlling for age and sex (AD: 2-year change, left: 

−log10(p-values)=2.58–4.84, right: not significant; MCI: 2-year change, left: −log10(p-

values)=2.15–4.41, right: not significant; Controls: 2-year change, left: not significant, right: 

−log10(p-values)=2.28–4.54, corrected). Results are corrected for multiple comparisons by 

thresholding at a q=0.05 false discovery rate (FDR) threshold across the entire brain surface. 

Blue represents areas where p-values passed the corrected significance threshold for a 

negative relationship between ventricular enlargement and cortical thickness values (greater 

VV enlargement associated with lower cortical GM thickness at baseline).

Bottom Panel: Plots of 2-year VV change against mean baseline GM thickness (x-axis: raw 

2-year VV change in mm3, y-axis: mean baseline GM thickness for statistically significant 

regions in mm). Each data point represents one subject within the matched N=100 subsets 

for AD, MCI, and healthy elderly control groups (AD: first row, MCI: second and third 

rows, Controls: last two rows). Each plot represents a distinct and continuous cortical region 

that passed correction with FDR in the surface GLM maps shown in the top panel of this 

figure. Within each statistically significant cortical region, GM thickness was averaged 

across all significant surface vertices. Letters correspond to labels on the cortical surface 

maps in the top panel and are ordered first by group (AD: A–D; MCI: E–J, controls: K–R) 
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and then by cortical region (from highest to lowest corrected p-value, all passed FDR in 

GLMs).
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